6309966

5/BL

Code No: E-10005
FACULTY OF SCIENCE
B.A. / B.Sc. (CBCS) I Senseter (Backlog) Examination, June / July 2023
Subject: Mathematics
Paper -I: Differential and Integral Calculus
Max. Marks: 80
Note: Answer any eight questions.
1-if
$$u = \sin^{-1} \frac{x}{y} + \tan^{-1} \frac{y}{x}$$
 show that $x\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$.
2. If $u = \log(x^3 + y^3 + z^3 - 3xyz)$ show that $\left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}\right) = \frac{3}{x^4 + x^4}$.
3. Verify that if $z = xy f(y/x)$ then $x\frac{\partial z}{\partial x} + y\frac{\partial u}{\partial y} = 2z$.
4. Find $\frac{dz}{dt}$ when $z = xy^2 + x^2y$, $x = at^2$, $y = 2at$.
5. If $F(x, y, z) = 0$ find $\frac{\partial z}{\partial x} \frac{\partial z}{\partial y}$.
6. State Taylor's theorem for function of two variables.
7. Define radius of curvature.
8. Find the envelope of the straight lines $x \cos a + y \sin a = l \sin a \cos a$, a is parameter.
9. Find $\frac{dz}{dt}$ for the curve $x = a(t - sint) y = b(1 - cost)$.
10. Find the perimeter of the circle $x^2 + y^2 = a^2$.
11. Find the length of the arc of the grup $y = logsec x$ from $x = 0$ to $x = \pi/4$.
12. Find the volume of the hemisphere
PART - B
Note: Answer all the questions.
(OR)
b) If $u = \tan\left(\frac{y+y}{(x_{x+\sqrt{y}})}\right)$ show that $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \frac{1}{4}\sin 2u$.
14. a) Expand sin xy in powers of $(x - 1)$ and $(y - \frac{\pi}{2})$ upto second degree terms.
(OR)
b) Prove that $f_{xy}(0,0) \neq f_{yx}(0,0)$ for the function f given by
 $f(x, y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}; (xy) \neq (0,0)$, $f(0,0) = 0$.
15. a) Show that the evolute of the ellipse $\frac{x^2}{dx} + \frac{y^2}{b^2} = 1$ is $(ax)^{2/3} + (by)^{2/3} = (a^2 - b^2)^{2/3}$.
(OR)
b) Find the envelope of the straight line $\frac{x}{a} + \frac{y}{b^2} = 1$ when $ab = c^2$, c is constant.
16. a) Find the volume of the right circular cone of height h and base of radius a.
(OR)

600121468032

b) Find the length of the curve $y = \log \frac{e^{1}-1}{e^{x}+1}$ from x = 1 to x = 2.