SEMESTER-VI

1.6 Numerical Analysis

(w.e.f. academic year 2021-22)

DSE-VI(A)

BS:601/A

Theory: 5 credits and Tutorials: 0 credits Theory: 5 hours /week and Tutorials: 1 hours /week

Objective: Students will be made to understand some methods of numerical analysis. **Outcome:** Students realize the importance of the subject in solving some problems of algebra and calculus.

Unit- I

Errors in Numerical Calculations - **Solutions of Equations in One Variable**: The Bisection Method - The Iteration Method - The Method of False Position-Newton' s Method - Muller' s Method - solution of Systems of Nonlinear Equations.

Unit- II

Interpolation and Polynomial Approximation: Interpolation - Finite Differences - Differences of Polynomials - Newton's formula for Interpolation - Gauss's central differences formulae - Stirling's and Bessel's formula - Lagrange's Interpolation Polynomial - Divided Differences - Newton's General Interpolation formula - Inverse Interpolation.

Unit- III

Curve Fitting: Least Square Curve Fitting: Fitting a Straight Line-Nonlinear Curve Fitting. **Numerical Differentiation and Integration**: Numerical Differentiation - Numerical Integration: Trapezoidal Rule-Simpson' s 1/3rd-Rule and Simpson' s 3/8th-Rule - Boole' s and Weddle' s Rule -Newton' s Cotes Integration Formulae.

Unit- IV

Numerical Solutions of Ordinary Differential Equations: Taylor's Series Method - Picard's Method - Euler's Methods - Runge Kutta Methods.

Text:

• S.S.Sastry, Introductory Methods of Numerical Analysis, PHI

References:

- Richard L. Burden and J. Douglas Faires, Numerical Analysis (9e)
- M K Jain, S R K Iyengar and R K Jain, Numerical Methods for Scientific and Engineering computation
- B.Bradie , A Friendly introduction to Numerical Analysis

SEMESTER-VI

1.7 Integral Transforms

(w.e.f. academic year 2021-22)

DSE - VI(B)

BS:601/B

Theory: 5 credits and Tutorials: 0 credits Theory: 5 hours /week and Tutorials: 1 hours /week

Objective: Students will be exposed to Integral Transforms. The students also learning the Applications of Laplace Transforms to Differential Equations which arises in Physics and Engineering Problems.

Outcome: Students apply their knowledge to solve some problems on special functions and Differential Equations by using the Integral Transforms.

Unit- I

Laplace Transforms-Definition-Existence theorem-Laplace transforms of derivatives and integrals - Periodic functions and some special functions.

Unit- II

Inverse Transformations - Convolution theorem - Heaviside' s expansion formula.

Unit- III

Applications to ordinary differential equations - solutions of simultaneous ordinary differential equations - Applications to Partial differential equations.

Unit- IV

Fourier Transforms- Sine and cosine transforms-Inverse Fourier Transforms.

Text:

• Vasishtha and Gupta, Integral Transforms, Krishna Prakashan Media(P), Ltd, Meerut (2e)

SEMESTER-VI

1.8 Analytical Solid Geometry

(w.e.f. academic year 2021-22)

DSE – VI(C)

BS:601/C

Theory: 5 credits and Tutorials: 0 credits Theory: 5 hours /week and Tutorials: 1 hours /week

Objective: Students learn to describe some of the surfaces by using analytical geometry. **Outcome:** Students understand the beautiful interplay between algebra and geometry.

Unit- I

Sphere: Definition-The Sphere Through Four Given Points-Equations of a Circle- Intersection of a Sphere and a Line-Equation of a Tangent Plane-Angle of Intersection of Two Spheres-Radical Plane.

Unit- II

Cones and Cylinders: Definition-Condition that the General Equation of second degree Represents a Cone-Cone and a Plane through its Vertex -Intersection of a Line with a Cone.

Unit- III

The Right Circular Cone-The Cylinder- The Right Circular Cylinder.

Unit- IV

The Conicoid: The General Equation of the Second Degree-Intersection of Line with a Conicoid-Plane of contact-Enveloping Cone and Cylinder.

Text:

• Shanti Narayan and P K Mittal, *Analytical Solid Geometry* (17e)

References:

- Khaleel Ahmed, Analytical Solid Geometry
- SLLoney, Solid Geometry
- Smith and Minton, Calculus